lunes, 29 de agosto de 2011

SENSORES


Un sensor es un dispositivo capaz de detectar magnitudes físicas o químicas, llamadas variables de instrumentación, y transformarlas en variables eléctricas. Las variables de instrumentación pueden ser por ejemplo: temperatura, intensidad lumínica, distancia, aceleración, inclinación, desplazamiento, presión, fuerza, torsión, humedad, pH, etc. Una magnitud eléctrica puede ser una resistencia eléctrica (como en una RTD), una capacidad eléctrica (como en un sensor de humedad), una Tensión eléctrica (como en un termopar), una corriente eléctrica (como en un fototransistor), etc.
Un sensor se diferencia de un transductor en que el sensor está siempre en contacto con la variable de instrumentación con lo que puede decirse también que es un dispositivo que aprovecha una de sus propiedades con el fin de adaptar la señal que mide para que la pueda interpretar otro dispositivo. Como por ejemplo el termómetro de mercurio que aprovecha la propiedad que posee el mercurio de dilatarse o contraerse por la acción de la temperatura. Un sensor también puede decirse que es un dispositivo que convierte una forma de energía en otra. Áreas de aplicación de los sensores: Industria automotriz, Industria aeroespacial, Medicina , Industria de manufactura, Robótica , etc.

 SENSORES INDUCTIVOS:Los sensores inductivos son una clase especial de sensores que sirven para detectar materiales metálicos ferrosos. Son de gran utilización en la industria, tanto para aplicaciones de posicionamiento como para detectar la presencia o ausencia de objetos metálicos en un determinado contexto: detección de paso, de atasco, de codificación y de conteo.
 
 CARACTERISTICAS:En el momento del diseño de aplicaciones donde se usen sensores inductivos, se deben tener en cuenta una serie de caracteristicas técnicas de este tipo de sensores que pueden afectar a su comportamiento y hacer que éste no sea el adecuado o esperado.
La superficie del objeto a detectar no debe ser menor que el diámetro del sensor de proximidad (preferentemente 2 veces más grande que el tamaño o diámetro del sensor). Si fuera menor que el 50% del diámetro del sensor, la distancia de detección disminuye sustancialmente.
Debido a las limitaciones de los campos magnéticos, los sensores inductivos tienen una distancia de detección pequeña comparados con otros tipos de sensores. Esta distancia puede variar, en función del tipo de sensor inductivo, desde fracciones de milímetros hasta 40 mm en promedio.


SENSORES CAPACITIVOS:Desde el punto de vista puramente teórico, se dice que el sensor está formado por un oscilador cuya capacidad la forman un electrodo interno (parte del propio sensor) y otro externo (constituido por una pieza conectada a masa). El electrodo externo puede estar realizado de dos modo diferentes; en algunas aplicaciones dicho electrodo es el propio objeto a sensar, previamente conectado a masa; entonces la capacidad en cuestión variará en función de la distancia que hay entre el sensor y el objeto. En cambio, en otras aplicaciones se coloca una masa fija y, entonces, el cuerpo a detectar utilizado como dieléctrico se introduce entre la masa. y la placa activa, modificando así las características del condensador equivalente.


Ventajas e Inconvenientes
Las ventajas de este dispositivo son algunas más que en el caso de los sensores inductivos. La primera ventaja es común para ambos, detectan sin necesidad de contacto físico, pero además esto sensor lo realiza de cualquier objeto. Además, debido a su funcionamiento tiene muy buena adaptación a los entornos industriales, adecuado para la detección de materiales polvorientos o granulados. La duración de este sensor es independiente del número de maniobras que realice y soporta bien las cadencias de funcionamiento elevados. Entre los inconvenientes se encuentra el alcance, dependiendo del diámetro del sensor, puede alcanzar hasta los 60mm, igual que la modalidad inductiva. Otro inconveniente es que depende de la masa a detectar, si quiero realizar una detección de cualquier tipo de objeto este sensor no nos sirve, puesto que depende de la constante eléctrica. Esta desventaja viene encadenada con la puesta en servicio, antes de colocar el sensor lo tenemos que instalar; los detectores cuentan con un potenciómetro de ajuste que permite ajustar la sensibilidad. Según la aplicación será necesario adaptar el ajuste, por ejemplo para materiales de constante dieléctrica (er) débil como el papel, cartón o vidrio, en caso de tener una er fuerte tenemos que reducir la sensibilidad, con objetos del tipo metales o líquidos. 
CARACTERISTICAS: Existen muchas aplicaciones que requieren el sensar a distancia materiales no metálicos y, para ello se emplea este tipo de sensor que usa el efecto capacitivo a tierra de los objetos a sensar. Ejemplos: Presencia de agua en un tubo o el cereal dentro de una caja de cartón.

_ Principalmente se emplean para líquidos y sólidos no metálicos y, externamente son muy parecidos a los sensores inductivos (Ver arriba)
_Además, la distancia de sensado siempre se especifica para agua en estado líquido pero, para otros materiales es diferente. Para el vidrio se tiene que considerar un factor de corrección del 65%, mientras que para el agua congelada del 30%.  


SENSORES FOTOELECTRICOS: Un sensor fotoeléctrico es un dispositivo electrónico que responde al cambio en la intensidad de la luz. Estos sensores requieren de un componente emisor que genera la luz, y un componente receptor que “ve” la luz generada por el emisor. Todos los diferentes modos de sensado se basan en este principio de funcionamiento. Están diseñados especialmente para la detección, clasificación y posicionado de objetos; la detección de formas, colores y diferencias de superficie, incluso bajo condiciones ambientales extremas.


CARACTERÍSTICAS:Estos sensores son muy usados en algunas industrias para contar piezas, detectar colores, etc., ya que reemplazan una palanca mecánica por un rayo de luz que puede ser usado en distancias de menos de 20 mm hasta de varias centenas de metros, de acuerdo con los lentes ópticos empleados.
_Los fotodetectores son típicamente fotodiodos o fototransistores, inclinándose los fabricantes por los primeros por su insensibilidad a campos de radiofrecuencia, que podrían causar interferencia
*Los diferentes tipos de sensores se agrupan por el tipo de detección: 
        a) Sensores de Transmisión Directa. Cuando existe un receptor y un emisor apuntados uno al otro. Tiene     este método el más alto rango de detección (hasta unos 60 m).
  b) Sensores Reflex. Cuando la luz es reflejada por un reflector especial cuya particularidad es que devuelve la luz en el mismo ángulo que la recibe ( 9 m de alcance).
  c) Sensores Reflex Polarizados. Son prácticamente iguales a los del tipo anterior, excepto que, el emisor tiene un lente que polariza la luz en un sentido y el receptor otro que la recibe mediante un lente con polarización a 90 ° del primero. Con ésto, el control no responde a objetos muy brillosos que pueden reflejar la señal emitida (5m de alcance).
  d) Sensores de Foco Fijo. Cuando la luz es reflejada difusamente por el objeto y es detectado por el hecho de que el transmisor y el receptor están estereoscópicamente acoplados, evitando con ello interferencia del fondo (3.5 m de alcance).  




 sensores de barrera: Cuando existe un emisor y un receptor apuntados uno al otro (este método tiene el más alto nivel de detección)


sensores réflex: Cuando la luz es reflejado con un reflector especial, cuya característica es que devuelve la luz en el mismo ángulo que la recudida.

sensor auto réflex: Son iguales al anterior, excepto que el emisor tiene un lente que polariza la luz en un sentido.
_La luz infrarroja viaja en línea recta, en el momento en que un objeto se interpone el haz de luz rebota contra este y cambia de dirección permitiendo que la luz sea enviada al receptor y el elemento sea censado, un objeto de color negro no es detectado ya que este color absorbe la luz y el sensor no experimenta cambios. 

 
  

Finales de carrera

 TIPOS DE LOS FINALES DE CARRERA:
Dentro de los dispositivos sensores de final de carrera existen varios tipos:
  Honeywell de seguridad: Este final de carrera está incorporado dentro de la gama GLS de la empresa Honeywell y se fabrica también en miniatura, tanto en metal como en plástico y madera,con tres conducciones metálicas muy compactas..
  Fin de carrera para entornos peligrosos: Se trata en concreto de un microinterruptor conmutador monopolar con una robusta carcasa de aluminio. Esta cubierta ha sido diseñada para poder soportar explosiones internas y para poder enfriar los gases que la explosión genera en su interior. Este interruptor se acciona mediante un actuador de la palanca externo de rodillo que permite un ajuste de 360º.
  Set crews: Estos tipos de finales de carrera se utilizan para prevenir daños en el sensor provocados por el objeto sensado. Están compuestos por un cilindro roscado conteniendo un resorte con un objetivo de metal el cual es detectado por el sensor inductivo por lo que puede soportar impactos de hasta 20 N sin sufrir daños.

El final de carrera o sensor de contacto (también conocido como "interruptor de límite") o limit swicht, son dispositivos eléctricos, neumáticos o mecánicos situados al final del recorrido de un elemento móvil, como por ejemplo una cinta transportadora, con el objetivo de enviar señales que puedan modificar el estado de un circuito. Internamente pueden contener interruptores normalmente abiertos (NA), cerrados (NC) o conmutadores dependiendo de la operación que cumplan al ser accionados.
Generalmente estos sensores están compuestos por dos partes: un cuerpo donde se encuentran los contactos y una cabeza que detecta el movimiento. Su uso es muy diverso, empleándose, en general, en todas las máquinas que tengan un movimiento rectilíneo de ida y vuelta o sigan una trayectoria fija, es decir, aquellas que realicen una carrera o recorrido fijo, como por ejemplo ascensores, montacargas, robots, etc.







Principio de Funcionamiento
El movimiento mecánico en forma de leva o empujador actúa sobre la palanca o pistón
de accionamiento del interruptor de posición haciendo abrir o cerrar un contacto eléctrico
del interruptor.
Esta señal eléctrica se utiliza para posicionar, contar, parar o iniciar una secuencia
operativa al actuar sobre los elementos de control de la máquina.


Estos sensores tienen dos tipos de funcionamiento: modo positivo y modo negativo. En el modo positivo el sensor se activa cuando el elemento a controlar tiene una tara que hace que el eje se eleve y conecte el contacto móvil con el contacto NC. Cuando el muelle (resorte de presión) se rompe el sensor se queda desconectado. El modo negativo es la inversa del modo anterior, cuando el objeto controlado tiene un saliente que empuje el eje hacia abajo, forzando el resorte de copa y haciendo que se cierre el circuito. En este modo cuando el muelle falla y se rompe permanece activado.




Tipos





Ventajas y desventajas

http://www.maresa.com/pdf/06%20finales%20de%20carrera%20y%20microinterruptores/p%206-1%20finales%20de%20carrera%20E100,%20E300,%20E400.pdf

martes, 16 de agosto de 2011

diagrama de partes



1.- Temporizador a la conexión.














2.- Temporizador a la desconexión.











3. Temporizadores neumáticos.



4. Temporizadores de motor síncrono.





5. Temporizador electrónicos



6. Temporizadores térmicos. 



7.- Temporizador para arrancadores estrella - triángulo.












DESCRIPCIÓN DEL FUNCIONAMIENTO

1. Temporizador a la conexión.


cuyo contacto de salida conecta después de un cierto retardo a partir del instante de conexión de los bornes de su bobina. A1 y A2 , El tiempo de retardo es ajustable mediante un potenciómetro o regulador frontal del aparato si es electrónico.


2. Temporizador a la desconexión.



Cuando el temporizador deja de recibir tensión y al cabo de un tiempo conmuta los contactos, se denomina Temporizador a la Desconexión.
Es un relé cuyo contacto de salida conecta instantáneamente al aplicar la tensión de alimentación en los bornes de la bobina. Al quedar sin alimentación, el relé permanece conectado durante el tiempo ajustado por el potenció metro frontal o remoto, desconectándose al final de dicho lapso.
3. Temporizadores neumáticos.


El funcionamiento del temporizador neumático esta basado en la acción de un fuelle que se comprime al ser accionado por el electroimán del relé , Al tender el fuelle a ocupar su posición de reposo la hace lentamente, ya que el aire ha de entrar por un pequeño orificio, que al variar de tamaño cambia el tiempo de recuperación del fuelle y por lo tanto la temporización.


4. Temporizadores de motor síncrono.


Son los temporizadores que actúan por medio de un mecanismo de relojería accionado por un pequeño motor, con embrague electromagnético. Al cabo de cierto tiempo de funcionamiento entra en acción el embrague y se produce la apertura o cierre del circuito.


5. Temporizador electrónicos.


El principio básico de este tipo de temporización es la carga o descarga de un condensador " C " mediante una resistencia " R ". por lo general se emplean condensadores electrolíticos de buena calidad, siempre que su resistencia de aislamiento sea bastante mayor que la resistencia de descarga R : en caso contrario, el condensador C se descargaría a través de su insuficiente resistencia de aislamiento.


6. Temporizadores térmicos.



Los temporizadores térmicos actúan por calentamiento de una lamina bimetálica El tiempo viene determinado por el curvado de la lamina.
Constan de un transformador cuyo primario se conecta a la red, pero el secundario, que tiene pocas espiras y esta conectado en serie con la lamina bimetálica, siempre tiene que estar en cortocircuito para producir el calentamiento de dicha lamina, por lo que cuando realiza la temporización se tiene que desconectar el primario y deje de funcionar

7. Temporizador para arrancadores estrella - triángulo



Es un temporizador por pasos destinado a gobernar la maniobra de arranque estrella triángulo. Al aplicarle la tensión de alimentación, el contacto de estrella cierra durante un tiempo regulable, al cabo del cual se abre, transcurre una pausa y se conecta el contacto de triángulo. El tiempo de pausa normal está entre 100 y 150 ms.
Ahora hemos cogido las diferentes clases de temporizadores y les hemos aplicado a los relés con lo que tenemos las siguientes temporizaciones :
- Mecánica o neumática
- Magnética ( relés de manguito ).
- Térmicas ( relés de bilámina ).
- Eléctrica ( relés de condensador).






lunes, 15 de agosto de 2011

CLASIFICACION DE LOS TEMPORIZADORES

1. temporizador a la conexión
2.temporizador a la desconexion 
3.temporizadores neumáticos
4.temporizadores de motor sincrono
5.temporizador electrónico
6.temporizadores térmicos
7.temporizador para arrancadores estrella-triangulo